“Robotic Packaging Opportunities”

Mark Senti
Vice President – Robotics Technology
SWF Companies – GSMA

Thursday, May 4, 2006

PAK/PAL Conference
Sheraton St. Louis City Center
St. Louis, Missouri
Presentation Objectives

- Understanding the “Robotics Opportunity”
 - Robotic Features & Benefits
 - How robotics compares to traditional packaging automation.
 - Examples of robotics from “in-feed” to “end-of-line”.
Speaker’s Background

- **Experience**
 - Vice President Robotics Technology – GSMA, Division of SWF Companies
 - Former CEO/President – GSMA Systems, Inc.
 - Design, manufacturer and support robotics/automation systems
 - Former Vice President/Director – Advanced Magnet Lab
 - Design, manufacturing of normal and superconducting magnetic systems.
 - Former, Manufacturing Engineer – Cray Research, Inc.
 - Design and manufacturing of Supercomputers
 - Over 16 years of product development, automated manufacturing & systems engineering

- **Industry Recognition**
 - Advisor, Robotics International SME
 - Outstanding Young Manufacturing Engineer Award, International Award, Society of Manufacturing Engineers, 1992
 - President’s Award & Service Pin, Society of Manufacturing Engineers, April 1993
 - Cray Research Leadership and Innovation Award, 1990
 - 1st Recipient, Distinguished Alumnus Award 97–98, Wisconsin State Technical College Boards Association, Jan. 1998
 - Certified Manufacturing Technologist, 1987–present
 - 1st Recipient, National Outstanding Technical Student of the Year, American Technical Education Association, 1989
 - Distinguished Student Scholar, Phi Theta Kappa National Honor Fraternity, 1988

- **Publications/Speaker: Robotics & Automation Expositions/Conferences**
 - Robotic Line Realities, PackOps 2006, PMMI, November 2005
 - Robotic Packaging Automation Opportunities, PackExpo 2005, Sept 2005
 - Robotic Packaging Automation/Automation & Assembly Summit, April 2005
 - Leveraging Robotics to Improve Packaging Line Performance, Flexibility and Cost, PackExpo, Nov. 2004
 - Vision Integrated Robotics, American Imaging Association, October 2004
 - Robotic Packaging & Palletizing, PackExpo, October 2003
 - Robotics Small Parts Assembly, Assembly Technology Expo, September 2003
 - Robotics in Assembly, Assembly East, June 2003
 - Successful Implementation of Robotics for Small Parts Assembly, Test & Packaging, WESTEC, March 2003
 - Robot vs. Pneumatics Analysis, IMTS Manufacturing Conference, September 2002
 - Robotic Citrus Harvesting Technology Forum, April 2002
 - Fully-Integrating a Robotic System for Small Parts Assembly, Assembly Tech Expo, October 2001
 - The Challenge of CIM: Prototype to Production, AUTOFACT ’92 Conference, Nov. 1992
 - Cray Research Technical Symposium: Manufacturing the GRAVITY- NP C90 Wire Chassis, June 1991
Today’s “Commodity” Robots
Reliability

Robots are proven to provide:

50,000 to 75,000 hours MTBF [Mean Time Between Failure] of operation without failure.

Equivalent to 25–37 “man–years”
Robotics Are in All Industries

- Aerospace
- Agriculture
- Appliances and Consumer Goods
- Automotive
- Building Products & Materials
- Education
- Electronics
- Furniture
- Space & Defense
- Distribution
- Food & Beverage Healthcare
- Pharmaceutical
- Plastics & Metals
- Printing & Publishing
- Semiconductor
- Marine
- Medical
- Mining and Foundry
- High Energy Physics
- Research & Development
- Textile
Reliability: Failure Opportunity Analysis

3-Axis Pneumatic
Pick & Place

6-Axis Robot
Assemble, Unload & Sort
Reliability: Robotic vs. Pneumatic

- Robotic Components Required
 1. Robot (4-6 axes)
 2. Gripper
 3. Break-away device (collision sensor)
 4. Software Replaces Sensor

- Pneumatic Components Required (per one axis only)
 1. Axis slide
 2. Axis sensors/brackets/cables/connectors (2 each)
 3. Hard Stop (2)
 4. Shocks (2)
 5. Mounting interface plates and hardware
 6. Flow controls (2)
 7. Valve/cable/connector
 8. Pressure Regulator
 9. Tubing and Connectors
 10. Gripper
Reliability: Failure Opportunity Analysis

- 2-Axis Pneumatic Manipulator with one Rotary Axis

<table>
<thead>
<tr>
<th>Component</th>
<th>Sensor</th>
<th>Cable</th>
<th>Valves</th>
<th>Flow Control</th>
<th>Tubing</th>
<th>Shock</th>
<th>Slides</th>
<th>Bearing</th>
<th>Seal</th>
<th>Bracket</th>
<th>Air Quality</th>
<th>Fasteners</th>
<th>Tech. Adj</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Stroke</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>X-Stroke</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>Rotary</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Collision Device</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Gripper</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Potential Failures</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>6</td>
<td>4</td>
<td>25</td>
<td>5</td>
<td>108</td>
</tr>
</tbody>
</table>

- 6-Axis Robot

<table>
<thead>
<tr>
<th>Component</th>
<th>Sensor</th>
<th>Cable</th>
<th>Valves</th>
<th>Flow Control</th>
<th>Tubing</th>
<th>Shock</th>
<th>Bolts</th>
<th>Bearing</th>
<th>Seal</th>
<th>Bracket</th>
<th>Air Quality</th>
<th>Fasteners</th>
<th>Tech. Adj</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-axis ServoMotor</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Collision Device</td>
<td>0</td>
</tr>
<tr>
<td>Gripper</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Potential Failures</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>

Robots range from 50,000 – 75,000 hours MTBF
Three-Axis Pneumatic Manipulators is *6-times More* likely to have a *Failure* than a 6-axis Robots

Robots range from 50,000 – 75,000 hours MTBF
Reliability: Robotic vs. Traditional

Vs.
Reliability: Robotic vs. Traditional

Failure Opportunity Analysis

- Bottle Gripper
- Servo Drive
- Pneumatic Cylinder
- Conveyor
- Diverter
- Sensor
- Flexing Cables
- Valves
- Flow Control
- Shocks
- Bearings
- Chains/Pulleys
- Bracket Adjustments

of Failures

- Traditional
- SWF Robotic
Reliability: Robotic vs. Traditional

Total Failure Opportunity Comparison

of Failures

Traditional

SWF Robotic

0
50
100
150
200
250
Reliability: Robotic vs. Traditional

<table>
<thead>
<tr>
<th>#</th>
<th>Specifications & Features</th>
<th>SWF Robotic</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cases Per Minute</td>
<td>65 Max.</td>
<td>30 Max.</td>
</tr>
<tr>
<td>2</td>
<td>Axes of Packing Motion</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Changeover Time</td>
<td>5 minutes</td>
<td>2 hours</td>
</tr>
<tr>
<td>4</td>
<td>Reliability of Motion Components</td>
<td>64,500 MTBF</td>
<td>100's MTBF</td>
</tr>
<tr>
<td>5</td>
<td>Maintenance Interval Moving Components</td>
<td>6 months</td>
<td>Daily/Weekly</td>
</tr>
<tr>
<td>6</td>
<td>Weekly Maintenance Items</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>Remote Support</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Indexing to Indexing Motion Packing</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Continuous to Continuous Motion Packing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Indexing to Continuous Motion Packing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Continuous to Indexing Motion Packing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Collision Guard</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Case Floating During Packing</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Continuous [Rounded] Corner Motion</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pick Inserts or Separators</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Flap Control Required</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Reliability Conclusion

Robots are proven to provide:

50,000 to 75,000 hours MTBF [Mean Time Between Failure] of operation without failure.

Equivalent to 25–37 “man–years”

A six-axis servo robot is more reliable than one pneumatic actuator!
System Reliability

• Key to system reliability is providing integration of both robot and system

• System Reliability is Directly Related To:
 – The Total Number of Electrical & Mechanical Components

• Robots Increase Overall “System” Reliability
 – Eliminate Peripheral Equipment or Devices
 • i.e. Use of a pallet rack eliminated pallet dispenser, transfer conveyor and 90-degree transfers
 – Simplify Material Handling System
 • i.e. Random orientation eliminates complicated conveying systems required to orient, collate and accumulate
 – Simplify Tooling
 – Minimizes Mechanical Adjustments
 • Reduces problems from technician adjustments
System Reliability

- Old Way vs. New Way
System Reliability

• Eliminate collation and accumulation
System Reliability

• Eliminate collation and accumulation
Versatility & Flexibility

• Flexible Product In-Feed Presentation
 – Pick from *Random* or *Collated* presentations
 – Pick & Place from *Multiple Locations*
 – Pick & Place from *Multiple Heights*
 – Pick & Place *Mixture of Product Type* on a *Single In-Feed*

• Flexible to Handle More Than Just Product
 – Empty cases & full cases
 – Separators, inserts & partitions
 – Separator Sheets
 – Pallets, pucks, bins & totes
 – Tier sheets & pallet sheets
 – Unit load caps
Performance

• Optimum Product Handling
 – *Intermittent to Intermittent* Motion
 – *Continuous to Continuous* Motion
 – *Intermittent to Continuous* Motion
 – *Continuous to Continuous* Motion
 – *Highest Speeds* with *Gentle Handling*
 • Controlled acceleration & deceleration
 – Ability to use *Six Degrees-of-Freedom* for optimum loading, packing or palletizing
Changeover

- Changeovers
 - Very quick
 - Capable of automatic changeover
 - Programmable
Accurate Application Analysis

Depalletizing & Palletizing

Material Handling

Case Packing

De-Casing
Additional Benefits

• Maintenance
 – Minimizes the number of electrical and mechanical components in the system
• Facilities
 – Minimum footprint
 – Ease for custom configuration
 – Ease for mono-block solution
• Safety of Tooling & Product
 – Collision Guard Software *Protects Tooling*
 – Soft Float Software allows *X-Y “Float”* during product placement
Additional Benefits

• **Common Manufacturing Technology**
 - Same robot or robot family can be used for different applications such as packing/depalletizing/palletizing on the same line or within the same facility

• **Remote Support & Communication**
 - Direct connection and control to system
Environment

• Unlimited Opportunity
 – Clean Room
 – Cold
 – Dusty
 – Explosive
 – Heavy
 – Hot
 – Noisy
 – Radiation
 – Sanitary
 – Wet
Competitive

• Competitive Pricing for Robotic Solutions
 – Higher material costs are offset by reducing or eliminating:
 • Engineering
 • Fabrication
 • Assembly
 • Documentation
 • Debug & Installation
 • Risk, Rework… Redesign
Robotic vs. Traditional

- Traditional Shelf Horizontal Loader & Palletizer
 - More Cost
 - More Footprint
 - \(\approx 90\% \) More Maintenance
 - \(\approx 10x \) More Failure Opportunities

- Robotic Loading & Robotic Palletizing
 - Less Cost
 - Less Footprint
 - \(\approx 90\% \) Less Maintenance
 - \(\approx 10x \) Less Failure Opportunities

$850K $700K
Opportunities: In-Feed to End-Of-Line

• Robotics from Up-Line to End-of-Line Packaging
 – Depalletizing
 – De-Casing
 – In-feed Handling
 – Raw food Handling
 – Primary Packaging
 – Secondary Packaging
 – Mixing [Combo/Rainbow packs]
 – Palletizing
 – General Material Handling
 – Full-line & Integrated Solutions
Opportunities: In-Feed to End-Of-Line

- Common control, interface and operation from in-feed to end-of-line.
Depalletizing

- Removal of loaded and empty containers for up line filling/process applications
De-Casing

• Removal of product such as empty bottles for filling or product for mixing.
 – Common Technology for Mixing or Case Loading down stream.
 – Continuous motion tracking to prevent product tipping, eliminate accumulation and control of gapping.
In-Feed Product Handling

• Random Orientation Inspection & Processing
 – Vision inspection & part locate
 – Random oriented product locate and transfer into flow wrappers, cartoners, cases, trays, pouches, blisters
 – Continuous motion *pick*, continuous or intermittent motion *place*
Primary Packaging

• **Cartoning**
 – Robotics reduces complexity of in-feed and provides continuous or intermittent motion loading.
Primary Packaging

- **Cartoning**
 - Robotics minimizes mechanical systems used to accumulate and load cartons.
Primary Packaging

- Converting Horizontal Applications to Vertical Cartoning Solutions
Primary Packaging

- Horizontal Cartoning & Material Handling
 - Wrapped product unload, transfer & cartoner load
 - Five (5) Identical Robots, Two (2) Dial Tables, Fixtures, Puck Handling System
 - 6-month Payback
Primary Packaging

• Material Handling & Horizontal Cartoning
Primary Packaging

• Blister Loading – Random Orientation
 – Unstable product
 – High-speed
 – Continuous motion in-feed & loading
Primary Packaging

- **Blister Loading**
 - Blister load from racks
 - Small & Delicate Medical Devices
 - Seven (7) Products
 - Automatic Change Over
Primary Packaging

• Raw Food Handling
 – Random orientation with Vision Locate
Secondary Packaging

• Collated Product
 – 6-axis robot fully optimizes the packing process while eliminating flap control.
Secondary Packaging

- Servo Metered Product
 - Pick on-the-fly and eliminate collating, accumulation, product re-orientation and changeover
Secondary Packaging

- **Servo Screw In-Feed**
 - Pick on-the-fly or intermittent
 - 6-axis robot eliminates flap control and changeover
Secondary Packaging

• Food Canisters
 – Robotic case loading in trays with HSC lids
 – Six-axis motion enables packing of tapered product
Secondary Packaging

• **Food Product**
 – Stand-up bags
 – Pick on-the-fly without collating/accumulating
 – Continuous motion case/tray conveying
Secondary Packaging

• Food Products
 – Stand-up bags with Servo Collating In-Feed
 – 6-axis manipulation of product
Product Mixing

• **Rainbow & Combo Packs**
 – Market driven to mix flavors, colors and sizes
 – Mixing is labor intensive requiring depalletizing, mixing, repackaging & palletizing
Product Mixing

• Rainbow & Combo Packs
 – Continuous Motion
 – 3 & 4 Flavor
 – 6 Robots vs. 4 Robots
Palletizing

• High Flexibility
 – Robot handles multiple lines, multiple products, multiple pallet types and Slip Sheets
 – No changeover
Palletizing

- Dual Palletizing Cell - 90-degree Case Transfer, Pallet Dispenser, Transfer Carts, Unit Load Labeling, Stretch Wrapping with/without Pallets, Database Driven Robotics, Automatic Grade Change [on the fly]
Palletizing
Palletizing

- **High Flexibility**
 - Robot handles heavy Pails & Bliss Cases
Palletizing

- High Flexibility
 - Robot handles bags or bundles
Palletizing

- **High Flexibility**
 - Robot handles cases & pails; various pallet types
 - Automatic changeover utilizing a robotic tool changer
Integrated Packaging Solutions

• Healthcare Products
 – Robotic cartoning & case loading
 – Bottle mixing, vision verify, case erecting and sealing
Integrated Packaging Solutions

- Tape Product
 - RSC Case Erecting, Tray Forming, Case Packing, and Palletizing
 - Over 350 SKUs
Integrated Packaging Solutions

• Paper Product
 – RSC Case Erecting, Layer Forming, Case Packing, Case Sealing, Palletizing & Stretch Wrapping
 – Palletize directly on Stretch Wrapper without pallets
Integrated Packaging Solutions
Integrated Packaging Solutions

• Case Erecting, Layer Forming, Case Packing, Case Sealing, Palletizing & Stretch Wrapping
General Material Handling

- Tray/Pan/Bin Handling
 - Increase over manual production by over 30%
 - Eliminate ergonomic problems
Robotic Opportunity

- Performance, Reliability, Flexibility & Quick Changeover
Robotic Flexibility

- Transfer, Erecting, Packing, Sealing, Labeling & Lidding
Achieving State-Of-The-Art Performance

• **Optimization Through Robotics**
 – Minimize Product Handling
 – Minimize Damage To Product
 – Minimize Failure Opportunities
 – Minimize Operator Intervention
 • Change Over
 • Recovery
 – Minimal Grade Change/Product Change Over
 – Minimize Maintenance
 – Intelligent Software
 • Automatic Diagnostics & Error Recovery
Robotics for Packaging: When & Why

- Difficult Product to Collate or Accumulate
- Variety of Product
- Variety of Presentations
- Multiple Lines
- Mixing/Combo/Random
- High Frequency of Changeover
- Minimal Space
- “Drop In” for Existing Line
Where Robotics May Not Make Sense

• Difficult to “Pick” Product
• Ease of Product Handling
• Dedicated Product
• Single Line with High Speeds
• Simple Drop Packer Application
• 1st Project with High Risk
Robotic Compatibility

• Matching robotic functionality to product needs and operator capabilities.
 – Critical to perform detailed and accurate applications analysis.
 – Analysis should include:
 • Detailed specification showing ALL products and ALL presentations/configurations.
 • Simulation Analysis
 • Site Visit
 – Fully appreciate requirements
 – Understanding of facility and existing culture
 – Solid Understanding of Customers Expectations
 • Be realistic!
 • Focus on 1st time success!
 – Don’t invest in the highest ROI, if the project has the highest Risk!
 – Chose a “lower” risk project and then build on its success.
Questions & Comments

Mark Senti
marksenti@gsma.com
321.480.8470

Depalletizing

Raw Food & In-Feed Handling

Primary Packaging

Secondary Packaging

Palletizing

Mixing/Combo Packs

Material Transfer & Handling