Robotics for Assembly Automation Tutorial

Robotic Industries Association
Presentation Overview

- Highlight Robots for Assembly Features & Benefits
- Explore “When & Why” To Incorporate Robotics for Assembly Automation
- Dispel Misconceptions about Robotics for Assembly
- Getting Started: How to Develop an RFQ
- List of Vendors and Additional Resources
Robotic Assembly Opportunity

• Properly integrated, today’s reliable robots offer tremendous opportunities for meeting the challenges of today’s dynamic products, product presentations and assembly lines.

• In addition, companies are commanding stringent operational conditions for 24/7 operations while still necessitating high reliability, low maintenance, flexibility and quick changeover between products.

• Today, robots are commodity products yielding superior performance, reliability and versatility.
Robotic Assembly Opportunity

- Robotics are being successfully implemented for assembly automation in numerous markets and applications including:
 - Aerospace
 - Agriculture
 - Appliances & Consumer Goods
 - Automotive
 - Building Products
 - Electronics
 - Energy Devices
 - Marine
 - Medical
 - Semiconductor
Robotic Assembly Opportunity

- Robotics provides a unique opportunity for assembly automation solutions. These opportunities include:
 - Minimize Risk
 - Minimize Product Handling
 - Minimize Damage To Product
 - Minimize Failure Opportunities
 - Minimize Operator Intervention
 - Minimal Product Change Over
 - Minimize Maintenance
 - Optimize Operational Performance
Robotic Assembly: Features & Benefits

- Understanding the features and benefits of using robots for assembly automation is best described when compared to “traditional” assembly automation technology.

- Key benefits of robotics over traditional include:
 - Higher Reliability
 - Robots Reduce Risks
 - Greater Flexibility & Versatility
 - Optimum Part/Product Handling
 - Quicker Changeover
 - Lower Maintenance
 - Greater Layout Flexibility
 - Control & Software
 - Common Technology Solution
 - Ease for Upgrade or Redeployment
 - Environment Compatibility
 - What is the real “system” cost?
Higher Reliability

• Robots (including controller) are proven to provide:
 – 50,000 to 100,000+ hours MTBF [Mean Time Between Failure] of operation without failure.
 • Equivalent to 25-40 “man-years”
Higher Reliability

• Robotic vs. Pneumatics
 – Robotic Pick & Place
 • Significantly simplified configuration
 • Substantial reduction in failure opportunities
Higher Reliability

• Robotic Components Required
 – Robot (4-6 axes) [50,000+ MTBF]
 • Includes controller
 • Includes collision guard software eliminating break-away device
 – Gripper

• Pneumatic Components Required (per one axis only)
 – Axis slide
 – Axis sensors/brackets/cables/connectors (2 each)
 – Hard Stop (2)
 – Shocks (2)
 – Mounting interface plates and hardware
 – Flow controls (2)
 – Valve/cable/connector
 – Pressure Regulator
 – Tubing and Connectors
 – Gripper
Higher Reliability

- **2-Axis Pneumatic Manipulator with one Rotary Axis**

<table>
<thead>
<tr>
<th>Component</th>
<th>Sensor</th>
<th>Cable</th>
<th>Valves</th>
<th>Flow Control</th>
<th>Tubing</th>
<th>Shock</th>
<th>Slides</th>
<th>Bearing</th>
<th>Seal</th>
<th>Bracket</th>
<th>Air Quality</th>
<th>Fasteners</th>
<th>Tech. Adj</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Stroke</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>X-Stroke</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>Rotary</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Collision Device</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Gripper</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Potential Failures</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>20</td>
<td>8</td>
<td>4</td>
<td>26</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

- **6 - Axis Robot**
 - *A robot can be considered as one component since it exceeds 50,000 MTBF*

<table>
<thead>
<tr>
<th>Component</th>
<th>Sensor</th>
<th>Cable</th>
<th>Valves</th>
<th>Flow Control</th>
<th>Tubing</th>
<th>Shock</th>
<th>Belts</th>
<th>Bearing</th>
<th>Seal</th>
<th>Bracket</th>
<th>Air Quality</th>
<th>Fasteners</th>
<th>Tech. Adj</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-axis Servo/actuator</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Collision Device</td>
<td>0</td>
</tr>
<tr>
<td>Gripper</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Potential Failures</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>16</td>
</tr>
</tbody>
</table>
Higher Reliability

• Three-Axis Pneumatic Manipulator is *6-times More* likely to have a *Failure* than a 6-axis Robots

![Failure Opportunity Analysis](chart.png)
Higher Reliability

• Simplify part handling to minimize total number of system electrical/mechanical components.
 – For example, using vision and robot to locate and pick parts from a bin or off a moving conveyor eliminates collating, accumulating and orienting. It also reduces part jamming and part changeover seen with conventional feeding.

• Addition of automatic tool changer eliminates operator handling, storing and assembly of tooling

• Utilizing robot auxiliary axes for ancillary motion/control eliminates an additional servo/control/software platform.

• Utilizing 6-axis robots for part handling can eliminate complex pneumatic devices and changeover.
Robots Reduce Risks

- **Design Process Development**
 - Engineering costs are a fraction of traditional systems
 - Robot is one “Part”

- **Fabrication & Assembly**
 - Less electrical and mechanical components

- **Integration**
 - Reduced time for debug & fine tuning

- **Maintenance**
 - Less maintenance….grease axes every 6 months and change the battery once a year

- **Technical Risks**
 - Use of robots greatly reduces risk from variations or changes during project

- **Greater Flexibility**
 - During and after project completion

- **Reduced Schedule**
 - Robots greatly reduce assembly and debug time

- **Reliability**
 - Not only are robots more reliable than traditional systems, they typically eliminate the total number of components in a system by performing multiple tasks
Greater Flexibility & Versatility

• Robotics can be configured to optimize the part/product handling compared to traditional assembly machinery which has a fixed footprint, component in-feed and assembly out-feed.

• Robotics provides the ability to easily design around the process/application instead of forcing a “standard “designed machine or limited function devices onto the process.
Greater Flexibility & Versatility

• **Examples of Robot Flexibility & Versatility**
 – Vision and Sensor Guidance
 • Vision/sensor guided part feeding verses fixed hard automated parts feeders
 – Picking of parts from multiple locations and heights
 – Mixtures of parts/products can be created by bringing in multiple in-feeds.
 – Picking of multiple part types with the same robot
 – 6-degree freedom robots enable optimum motion for assembling parts
 – Optimizing speed/motion while minimizing part handling. A robot can pick and place gently while moving from point to point high-speed with controlled acceleration & deceleration
Optimize Part/Product Handling

• **Speed**
 – Optimizing speed/motion while minimizing part handling. A robot can pick and place gently while moving from point to point very fast and with controlled acceleration/deceleration.

• **Assembly**
 – 6-degree freedom robots provide optimum motion for assembling parts. For example, a circuit board can be “rocked” at an angle into a mating part instead of straight in which requires almost a perfect alignment of both parts.

• **Quality**
 – Replacing the “bang-bang” motion of pneumatics with optimized motion profiling of a robot increases product quality.
Quicker Changeover

- Product changeover can be minimized or even eliminated with the use of “Tool Changers”.
- Automatic tool changers are available for all ranges of robots and payloads.
Quicker Changeover

- Incorporating the dexterity of a 6-axis robot reduces the number of electrical/mechanical devices required with conventional configurations.
- Database programming allows computing of robot motion based on product parameters which reduces the amount of robot programming when changing process or parts or product types.
Lower Maintenance

• When using the robot to simplify the system design and operation, the total number of electrical and mechanical components to maintain/repair in the system can be significantly reduced.
• Robots are virtually maintenance free typically requiring only greasing every 6 months to 3 years and changing of batteries annually.
• Tool Changers increase reliability by eliminating operator intervention of the tool, system and changeover procedure.
Greater Layout Flexibility

- Robots provide for design freedom to configure a system to optimize space and operations.

 - Traditional Automation
 - More Cost
 - More Footprint
 - \(\approx 90\% \) More Maintenance
 - \(\approx 10x \) More Failure Opportunities

 - Robotic Automation
 - Less Cost
 - Less Footprint
 - \(\approx 90\% \) Less Maintenance
 - \(\approx 10x \) Less Failure Opportunities
Robots Provide Accurate Simulations

- Use of robots allows highly accurate simulations to greatly reduce risk and product development.
Control & Software

- Robot controllers are highly advanced taking advantage of the latest in safety, communication, HMI, web interface, simulation, on-line documentation, integrated vision/intelligent sensors and application specific software.
- Robot controllers can be used to control the entire assembly solution including I/O, HMI’s and additional servo devices such as collators and metering conveyors.
- Ethernet communication provides reliable control interface to I/O and other equipment.
- Database driven software reduces or eliminates changeover.
- “Collision” Guard Software Protects Robot, Tooling and Product.
- “Soft Float” Software allows X-Y “Float” during part placement.
- 6-axis “force sensors” provide “intelligent” assembly.
- Remote connectivity provides remote support capability.
Common Technology Solution

- Allows common platform for multiple assembly stations
 - Same brand robots typically utilize common control platform
- Common platform across multiple factory applications
 - For example the same robot brand can be used for raw material handling, machine load/unload of components, assembly, testing, packaging and palletizing
Ease for Upgrade or Redeployment

• Upgrading for new products/processes is minimized.
 – Typically, changes are limited to robot tooling and programming.

• Robots can be redeployed for new applications if product/processes become obsolete or are moved to another facility.
Environmental Compatibility

- Robots are available and proven for most any application and environment.
 - Clean Room
 - Cold
 - Dusty
 - Explosive
 - Heavy
 - Hot
 - Noisy
 - Radiation
 - Sanitary
 - Wet
What is the real “system” cost?

• Costs to be considered are more than just “Materials”!
 – The true costs for the non-robot solution can be significant and include:
 • Engineering
 • Documentation
 • Fabrication
 • Assembly
 • Debug
 • Installation
 • Support
 • Changeover
 • Performance & Functionality
 • Risk, Rework….Redesign

Remember, the robot is “one” purchased component!
Robotic Assembly: When & Why?

• Use “Robotic Assembly” if your parts, assembly processes or product presents any of the challenges called out below:
 – Parts are difficult to feed, orient or accumulate
 – Variety of part or product types
 – Limited timeline for project development and integration
 – Short product life cycles
 – Traditional automation solutions would require a large number of pneumatic devices.
 – Product assembly has potential for process “simplification” if robots are used.

• Process
 – Variability in processes from one product to another
 – Ergonomic Issues
Robotic Assembly: When & Why?

- **Facility/Line Configuration**
 - Multiple Lines
 - Minimal Space
 - Minimal Accumulation due to space
 - Utilization of existing material handling or peripheral equipment

- **Operational Challenges**
 - High frequency of changeover
 - Difficulty to ramp up production between changeovers
 - Market driven changes in product and product presentations
Robotic Assembly: Misconceptions

• If you’re trying to improve your assembly process, don’t be misled by these old misconceptions about robot reliability, complexity and costs.
 – Robots cannot handle high speed lines
 – Robotics technology is complex
 – Robotics requires higher skilled operators and support personnel
 – Robotic solutions are unreliable
 – Robotic solutions are expensive

None of these statements are true!
Getting Started: Developing an RFQ

• Assembly automation analysis requires a detailed functional requirement analysis to develop an RFQ [Request for Quotation].

• It is critical that all parts/components, assemblies, processes, throughput rates, plant layouts and assembly details be included in the RFQ.
Getting Started: Developing an RFQ

- A RFQ (Request For Quotation) should include a Functional Requirements Specification (FRS)
 - Functional Requirements Specification
 - The purpose of an FRS is to define the projects requirements without providing any concept or solution.
 - *Must be complete before concept and proposal/quotation*
Getting Started: Developing an RFQ

• FRS should include the following:
 – Title Page
 – Revision & TBD
 – Scope
 – Associated Documents
 – Project Overview
 – System Functionality
 – Process Overview
 – System Configuration
 – Production Requirements
 – Reject/Failure Requirements
 – Critical Assumptions
 – Project Risks
 – Project Management Plan
 – Qualification Requirements
 – Sample Requirements
 – Additional Requirements
Developing an FRS

• When developing a FRS it is vital to clearly assess and understand the requirements including:
 – Product Description
 • General Description of product and assembly process
 • Detailed part and assembly drawings
 • Pictures & Samples
 – Assembly Process
 • Thorough machine cycle rate analysis [see later slides]
 • Detailed process documentation such as welding or bonding specifications/requirements.
 – Testing & Qualification
 • Detail test plan for BOTH process steps and final product qualification.
Developing an RFQ: Project Requirements

- Other product, process or general requirements or issues
 - Assembly Constraints
 - Quality and Reliability
 - Product mix-up validation
 - Machine Noise Limits
 - Operator Height Range
 - Data Acquisition
 - Validation & Certification
 - Project Timeline
 - Expected uptime and efficiencies
Machine Cycle Rate Analysis

- **Determining Machine Cycle-Rate**
 - Assembly system cycle-rate has a significant impact on the concept, design and project success.

- **A Perfect World** – 100% Efficiency – Does NOT exist!
 - Example shows a machine cycle rate of 5.18 seconds

<table>
<thead>
<tr>
<th>Cycle Rate Parameters</th>
<th>Data</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Shifts</td>
<td>3</td>
<td>Shifts</td>
</tr>
<tr>
<td>Number of Days per Week</td>
<td>5</td>
<td>Days</td>
</tr>
<tr>
<td>Number of Hours per Shift</td>
<td>5</td>
<td>Hours</td>
</tr>
<tr>
<td>Number of Weeks per Year</td>
<td>48</td>
<td>Weeks</td>
</tr>
<tr>
<td>System Availability (%)</td>
<td>100%</td>
<td>%</td>
</tr>
<tr>
<td>System Efficiency (%)</td>
<td>100%</td>
<td>%</td>
</tr>
<tr>
<td>Product Yield (%)</td>
<td>100%</td>
<td>%</td>
</tr>
<tr>
<td>Annual Production (# of Parts)</td>
<td>3,500,000</td>
<td>Parts</td>
</tr>
</tbody>
</table>

\[
\text{Annual Gross Hours} = \text{Shifts} \times \text{Days} \times \text{Hours} \times \text{Weeks} \\
3,600 \times 3 \times 5 \times 5 \times 48
\]

\[
\text{Annual Available Hours (Net)} = \text{Annual Hours} \times \text{Availability} \times \text{Efficiency} \times \text{Yield} \\
3,600 \times 100% \times 100% \times 100%
\]

\[
\frac{\text{Seconds Per Part}}{\text{Parts Per Hour}} = \frac{\text{Available Sec.}}{\text{Annual Units}} \\
\frac{5.18}{12,960,000} = \frac{2,500,000}{694}
\]
Machine Cycle Rate Analysis

• **Conservative Analysis**
 – Example shows a machine cycle rate of 4.14 seconds
 • 85% Machine Availability [parts available shift changes, etc…]
 • 95% System Efficiency
 • 99% Product Yield [1% scrap]
Machine Cycle Rate Analysis

- **Realistic Analysis**
 - Example shows a machine cycle rate of 4.63 seconds
 - 92% Machine Availability [parts available shift changes, etc…]
 - 98% System Efficiency
 - 99% Product Yield [1% scrap]

<table>
<thead>
<tr>
<th>Cycle Rate Parameters</th>
<th>Data</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Shifts</td>
<td>3</td>
<td>Shifts</td>
</tr>
<tr>
<td>Number of Days per Week</td>
<td>5</td>
<td>Days</td>
</tr>
<tr>
<td>Number of Hours per Shift</td>
<td>5</td>
<td>Hours</td>
</tr>
<tr>
<td>Number of Weeks per Year</td>
<td>48</td>
<td>Weeks</td>
</tr>
<tr>
<td>System Availability (%)</td>
<td>92%</td>
<td>%</td>
</tr>
<tr>
<td>System Efficiency (%)</td>
<td>98%</td>
<td>%</td>
</tr>
<tr>
<td>Product Yield (%)</td>
<td>99%</td>
<td>%</td>
</tr>
<tr>
<td>Annual Production (# of Parts)</td>
<td>2,500,000</td>
<td>Parts</td>
</tr>
</tbody>
</table>

- **Annual Gross Hours**
 - \(3,600 = \text{Shifts} \times \text{Days} \times \text{Hours} \times \text{Weeks}\)
 - Annual Hours (Net) = Annual Hours \times Availability \times Efficiency \times Yield
 - Annual Available Seconds (Net) = 11,567,889
 - Seconds Per Part = Available Sec. \div Annual Units
 - Parts Per Hour = 778
Project Management

• **Functional Requirements Specification**
 – Complete prior to Contract Award

• **Preliminary Design Review**
 – Complete Preliminary Design Specification
 – Block Diagrams Complete
 – Software Requirements Defined
 – Ordering of Long-Lead Components [i.e. Robot]

• **Final Design Review**
 – Complete Final Design Specification
 – Final Layouts
 – List of all Major Components
 – Detailed I/O Lists
 – Operation Specifications Complete
 – Software Flow Complete

• **Preliminary Acceptance**
• **Qualification of System**
 – Installation & Training
 – Final Acceptance
 – Qualification of System

• **After Sales Support**
Robot “Peripherals” for Assembly

• Incorporating other robot peripherals will optimize the robot(s) capability while significantly increasing system reliability and flexibility.
 – System Chassis Configuration
 – Machine Vision & Sensing
 – Part Handling Components
 – Assembly Test & Qualification
 – Software & Control
Peripherals: Chassis Configurations

- The “chassis” configuration provides the means for indexing the “assembly” through the assembly automation process.
- Robots provide the flexibility to easily integrate into any configuration.
- Chassis configurations may include:
 - In-line, Rotary Dial, Work Cell, Carrier Strip, Blow Feed, Hybrid… and more
Peripherals: Chassis Configurations

• **In-Line**
 – Power & Free
 • Using pucks/pallets which float/travel on continuously running “belt”.
 – Precision Indexing
 • Carousel or Over-Under
 – Walking Beam
Peripherals: Chassis Configurations

• **Rotary Dial**
 – Assembly rides in fixtures which are indexed from station to station on a rotary dial.

• **Work Cell**
 – Robots or operators provide “indexing” of assembly
Peripherals: Chassis Configurations

• Carrier Strip
 – Example of a creative solution whereby the assembly is performed with the “body” of the assembly still attached to a carrier strip.
 – The strip is indexed using the excise die.

• Blow Feed
 – Transfer of assembly by “blowing” part from one station to another.
Peripherals: Chassis Configurations

- Hybrid
Peripherals: Vision & Sensors

- Machine Vision/Sensors
 - Parts Handling
 - Part Identification
 - Robot Guidance
 - Assembly Verification
 - Package Verification
Peripherals: Vision & Sensors

• **Machine Vision Adds Flexibility**
 – Provides for Easy, Frequent Part Changeovers
 • Load New Projects As Needed From Robot Control
 – Adapts to Process and Part Variations
 • Parts Change in Overall Size
 – Measured Change Provided to Robot
 • Provides Data About Parts
 – Color, Size, Quantity …
 – Locates and Ids Multiple Parts
 • Identifies Which Parts Are Available
 • Provides Location for Each Part
 – Handle Random Orientation of Product
 – Reusable for Processing of Multiple Applications
 – Flexible Feeding using Robotics and Smart Feedback Systems
Peripherals: Vision & Sensors

• **Vision Reduces Cost**
 – Less Dedicated Tooling
 • Pick Parts Directly From Skid, Bin, Conveyor or Machine
 – **Reuse of Conveyance and Equipment**
 • Often Enables the Use of Existing Equipment
 – **Simplifies the Installation**
 • Less Components to Setup and Maintain Is Better
 – **Reduced Production Costs**
 • Less Inspectors
 • Fewer Machine Operators
 • Reduced Rework and Scrap
Peripherals: Vision & Sensors

- Robotics with Vision Increases Competitiveness
 - Enables New Applications
 - Adds Flexibility to the Robot
 - Lowers Costs
 - Improves Quality
 - Expandable for Changing Parts or Operations
 - Reduces Design and Build Effort
 - Provides Short Installation Times
Peripherals: Vision & Sensors

- Vision provides the ability to locate and orient part for assembly
Peripherals: Vision & Sensors

- Part identification and validation using vision
Peripherals: Vision & Sensors

- Vision for verifying assembly processes
Peripherals: Part Feeding

- **Products/Parts Feeding**
 - *Most system problems are due to PRODUCT QUALITY or “PRESENTATION” issues*
 - It is also where engineers tend to spend the least amount of effort during the design process.

- Many methods for presenting product to robot
 - Loose (bulk)
 - Accumulated (conveyor)
 - Random (conveyor)
 - Trays
 - Magazines
 - Taped Reels
 - Carrier Strip
Peripherals: Part Feeding

- Regardless of the “feeding” method, consider these general requirements:
 - Feed Rate (parts per minute)
 - Part Orientation [both in-feed and assembled/packaged]
 - Part Variability
 - Number of hours of part storage/buffer (usually 2 hours).
 - Load height (typically doesn’t exceed 65 inches)
 - Part Sensitivity to scratching or marring
 - Noise
Peripherals: Part Feeding

• Part Feeding
 – Bowl Feeding
 – Step Feeding
 – Flexible Feeding
 – Flex Bowl Feeding
 – Bin Picking
 – Tray Handling
 – Magazine Feeding
 – Tapes and Reel Feeding
 – Carrier Strip Feeding

Most can be simplified by….

…incorporating a robot/vision into the feeding scheme!
Peripherals: Part Feeding

• Bowl Feeding
 – Bulk load
 – Vibrate or Centrifugal
 – Orient and Lane Parts
 – Singulate for Transfer
Peripherals: Part Feeding

- **Step Feeding**
 - Bulk Load
 - Quiet
 - Gentle on Parts
 - Compact
 - Very Reliable
 - “Lower” Rates
Peripherals: Part Feeding

• Flex Bowl Feeding
 – Feed variety of parts in ONE bowl
 – Bowl feeding without final orientation
 • Feed parts only “right side” up
 • Utilize vision to locate part and robot to orient
Peripherals: Part Feeding

- **Flexible Feeding**
 - Incorporates vision to simplify the mechanics
 - Increases Flexibility
 - More tolerant to part variances
Peripherals: Part Feeding

- **Bin Feeding**
 - Layered or Bulk
 - Incorporates vision and/or sensors to locate for robot pickup
Peripherals: Part Feeding

- Tray Handling
- Magazine Feeding
- Tapes and Reel Feeding
- Carrier Strip Feeding
Peripherals: Test & Qualification

• Robots are often used for in process and final qualification of the assembly.
 – Assembly Tests
 • Leak
 • Torque
 • Sheer or Tensile
 • Force
 • Angular
 • Rotational
 – Functional Test
 • Full or Partial test of assembly as an operational “product”
Peripherals: Software & Control

• Historically, engineering for automation has emphasized mechanical design over software or control.

• Robot Controller, PLC or PC controls are normally used as the “main” controller. Larger lines have a Host-Line Controller.

• When choosing a control platform, be aware that the majority of software for a quality assembly system is for:
 – Error and emergency stop recovery, part tracking and operator interface. The actual assembly control is very rudimentary, as long as the control code is highly structured.
Control and Interface (HMI)

• At a minimum, software and the HMI Interface should include:
 – Graphical User Interface Touch Screen
 – Automatic, Manual, Audit and Re-Test Modes
 – Basic Process Tracking
 – Automatic Diagnostics for all feedback devices including sensors
 – Single Step/Cycle of each station process
 – Low Parts Indication
 – E-stop and Error recovery

• The challenge is to provide “simplistic” control architecture with “complex” or “sophisticated” control capabilities.
Case Study: Key Fob Assembly

- Robots (6)
- Vision Inspection (8)
- Vibratory feeders (8)
- PCB Tray handling
- Power-free conveyor system
- Distributed network control
- PC Network for vision and remote access
- Process tracking, remote access and automatic diagnostics
Case Studies: Key Fob Assembly

Upper Housing
- Verify 3 hole or 4 hole
- Date Stamp
- Robot with Flex Feeder places housing into pallet

Keypad
- Vision Verify (Object Recognition)
- Robotically place into Upper Housing

Transmitter PCB
- Robotic handling of trays and PCB
- Vision Inspect for battery seat & model number
- Robotically place into keypad

Lower Housing
- Vision OCR Part Number
- Robot with Flex Feeder places housing
- Pneumatic “snap” and sensor probe assembly verification

Key Ring
- Robot removes Fob from pallet and positions for assembly of ring
- “Ringer” assembled
- Robot presents assembly for “ringer” vision inspection
Case Study: Automotive Sensor

• Unique configuration integrated in phases to minimize risk and maximize overall project success.
• Common control platform for all sub-systems
• Phase-1: Final assembly of the automotive sensor product assembly.
• Phase-2: Assembly of the “float” sub-assembly
• Phase-3: Assembly of internal switch assembly.
• Phase-4: Product calibration, functional test and pack out.
Phase-1: Final Product Assembly

- Robots (3)
- Rotary Dial Indexing
- Bowl Feeders (3)
- Vision Guidance
- Rotary Indexing
- RTV Dispense
- Orbital Welding
- Leak Test
- Part Sorting
- Data Acquisition
- Two Part Types
- 800 parts/hour
- 1 part/4.5 seconds
Phase-2: Float Sub-Assembly

- Bowl Feeders (1)
- Vision Inspection
- Assembly
- Insertion Testing
- Blow Feeding
- Part Sorting
- Data Acquisition
- Two Part Types
Phase-3: Internal Switch Assembly

- Robots (1)
- Carrier Strip Indexing
- Vision Guidance
- Vision Inspection
- Precision Indexing
- Resistive Welding
- Crimping
- Part Sorting
- Data Acquisition
- Two Part Types
Phase 4: Calibration, Test & Pack Out

- Robots (2)
- Vision Inspection
- Rotary Indexing, Precision Indexing and Power-Free
- Functional Test
- Part Marking
- Part Sorting
- Packaging
- Data Acquisition
- Two Part Types
- 800 parts/hour
- 1 part/4.5 seconds
Case Study: Automotive Sensor

• Assembly of three unique sensor configurations using six axis robots to accommodate the differing geometries and processes.
 – Robots (6)
 – Bowl Feeders (5)
 – Pocketed Tape Feeder
 – Precision Indexing Axial Components
 – Component Form & Excise
 – Resistive Welding
 – Leak Test, Functional Test
 – Vision Inspection
 – Lubrication
 – Part Marking & Part Sorting
 – Data Acquisition
 – Two Part Types
 – 720 parts/hour
 – 1 part/5 seconds
Case Study: Medical Component

• Precision assembly of filament component based on real-time vision guidance.
 – Robots (2)
 – Shuttle Indexer
 – Laser Welding
 – Real-time vision feedback and Inspection
 – Database part configuration for 70+ part variations
 – PC Based Robot Controller and Interface
 – Statistical Process Control
 – Part Identification

• Large robot provided both manipulation of vision camera to locate part in relationship to mating housing geometry and laser welding of filament.
 – Automatic tool changing was incorporated to switch from manipulating camera and laser.

• Small robot provided manipulation of filament based on larger robots analysis.
Case Study: Gauge Assembly

• Automatic gauge assembly incorporating robots for part handling, tray handling product assembly.
 – Robots (4)
 – Rotary Dial
 – Bowl Feeders (5)
 – Robotic load/unload
 – Robotic tray handling
 – Robotic assembly
 – Torque drivers (2)
 – Taper